Industrial Chemistry Summaries

3) Sulfuric acid is one of the most important industrial chemicals:

3.1 Outline three uses of sulfuric acid in industry -

- 1. Production of Fertilisers (MAIN USE OF SULFURIC ACID):
 - **Superphosphate Fertiliser & Ammonium Sulfate are commercial fertilisers:**

$2\mathsf{NH}_{3\,(g)}+\mathsf{H}_2\mathsf{SO}_{4\,(\mathsf{aq})} \xrightarrow{} (\mathsf{NH}_4)_2\mathsf{SO}_{4\,(\mathsf{aq})}$

- 2. Pickling Steel
 - **Galvanising** requires steel to be free of defects (pure) otherwise it is ineffective
 - □ H₂SO₄ removes rust (Fe₂O₃) and other impurities before galvanising the steel item

FeO (s) + $H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2O(l)$

3. Dehydrating Agent

Concentrated H_2SO_4 is a strong dehydrating agent \rightarrow dehydration of ethanol

 $\textbf{C_2H_5OH}_{(l)} \xrightarrow{Conc.H_2SO_4} \textbf{C_2H_4}_{(g)} \textbf{+} \textbf{H_2O}_{(l)}$

- 4) The industrial production of sodium hydroxide requires the use of electrolysis:
- 4.1 Explain the difference between galvanic cells and electrolytic cells in terms of energy requirements –
- <u>Galvanic Cells</u> convert chemical potential energy into electrical energy via spontaneous redox reactions (chemical energy → electrical energy)
- <u>Electrolytic Cells</u> convert external DC electrical energy into chemical energy to drive a nonspontaneous reaction (electrical energy → chemical energy)

Galvanic Cell	Electrolytic Cell
 Spontaneous reaction converts chemical energy → electrical energy 	 Electrical energy → chemical energy to produce a non- spontaneous reaction
• Voltage of cell must be positive for reaction to occur (E^{\emptyset} >0)	 Applied voltage causes reaction so E^Ø can be negative (<0) (electrical energy required)
 Anode is <u>negative</u> → oxidation Cathode is <u>positive</u> → reduction 	 Anode is <u>positive</u> → oxidation Cathode is <u>negative</u> → reduction
 <u>Electrons</u>: Anode → cathode (negative to positive terminal) 	 <u>Electrons</u>: Negative battery terminal → cathode, then anode → positive battery terminal
• 2 Half-Cells have separate electrolytes, allowing current to be collected by an external circuit	 1 compartment with electrodes immersed in one electrolyte DC source removes electrons from anode and pushes electrons onto cathode → circuit is completed by ion flow

SIMILARITIES:

- + Electrolyte conducts electricity in the cell \rightarrow electrical charge is carried by anions & cations
- Oxidation at anode, reduction at cathode
- + In external circuit, current travels through wire from anode \rightarrow cathode

Prem-Ryan Lally

Industrial Chemistry Summaries

6.2 Describe the uses of sodium carbonate -

Anhydrous sodium carbonate (Soda Ash) is a white crystalline substance that is readily soluble in water → sodium carbonate exists as hydrated salts, the most common being sodium carbonate decahydrate (Washing Soda): Na₂CO₃ · 10H₂O

Uses:

- 1. <u>Glass Making</u>: Main use of Na₂CO₃ is in glass making \rightarrow glass is made by melting a mixture of Na₂CO₃, CaCO₃ (limestone) and SiO₂ (silicon dioxide \rightarrow sand
- 2. <u>Softening Agent:</u> Na₂CO₃ in form of washing soda is used in water treatment to soften water \rightarrow CO₃²⁻ ions precipitate with Ca²⁺ and Mg²⁺ ions, reducing hardness:

```
Ca^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow CaCO_{3(s)}
```

- 3. <u>Soap and Detergent Production</u>: Na₂CO₃ is used as a base in the production of soap/detergents, as a cheaper alternative to stronger alkalis e.g. NaOH
- 4. <u>Primary Standard</u>: Na₂CO₃ is a moderately weak base, has high molar mass, remains pure, is a solid and is air-stable, thus can be weighed accurately and used as a primary standard
- 5. <u>Electrolyte</u>: Na₂CO₃ is a very good conductor in electrolysis. CO₃²⁻ ions are not corrosive to the anodes